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S U M M A R Y  
An approximate formula for the inversion of the Laplace transform F(p) is studied. The formula is exact whenever 
Y(p) is a linear combination of p-S+k, k=0,  1, 2, ..., 2 N -  1, with s an arbitrary positive real number. The formula is 
~erived from a gaussian integration formula for Bromwich's inversion integral. 

A numerical example is given as illustration of the use of the approximate inversion formula. 

1. Introduction 

The Laplace transform is useful in solving some ordinary and partial differential equations and 
integral equations and arises in many areas of engineering mathematics. However, the exact 
determination of the original function f ( t )  from its Laplace transform 

is often a great difficulty. In many cases, numerical methods must be used. A number of 
interesting numerical methods are known [1], [2], [3], [4], [5], [6], the majority of which, 
unfortunately gives unsatisfactory results if F(p) has a branch point at itifinity. 

In this paper, we shall consider an approximate formula for the inversion of the Laplace 
transform, namely, 

N 

f( t)  = t ~ 1 Z {Ak(Uk/t)~V(Uk/t)} (2) 
k=l  

where s is a positive real number that must be chosen so that pSF (p) is analytic and has no 
branch point at infinity, thus so that we can write 

pSF(p) = ~ akP -k .  
k=O 

We shall give formulas for the coefficients Ak and we shall discuss a method for the Calculation 
of the coefficients Uk. The coefficients A k and Uk are dependent on the value of s and N. Salzer 
[6], [7] has already studied a formula of the same form of (2), but only for the special value 
s = 1. Krylov and Skoblya [8] and Skoblya [9] have given tables for the coefficients A k and Uk 
for several values of N and s, but with a very limited accuracy. Moreover, they have not given 
the formulas for Ak and Uk, presented here. 

2. Inversion of the Laplace Transform by Integration of Bromwich's Integral 

The original function f( t)  is given by 

f( t)  = ~ j  eptF(p)dp (3) 

where c is chosen so that the line Re (p) = c lies to the right of all singularities of F (p), but is 
otherwise arbitrary. 
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Substituting 

pt = u 
and 

F (u/t) = u-S G (u) 

where s is the parameter defined in section 1, (3) yields 

1 
f c'+~ e"u-~G(u)du (4) tf(t) = ~ j  .c'-jo~ 

where c' = tc. 
Thus for the inversion of the Laplace transform, we need a formula to calculate the integral 

in the second member of (3). We consider the approximate formula 
( c'+joo 

1 tc,_jooe, u SG(u)du,.. ' ~ AkG(uk). (5) 
2~j k=l 

Indeed, substituting (5) in (4), we have the desired approximate formula (2) for the inversion 
of the Laplace transform. We just have to give convenient formulas for the coefficients Ak 
and uk. 

We try to determine the abscissas uk and the weights A k in (5) so that the integration is exact 
whenever G(u) is a polynomial in u 1, of degree < 2 N -  1. Then we have a Gaussian integration 
formula, that has a degree of precision 2 N -  1. In section 3, we shall study orthogonal polyno- 
mials, the roots of which are the coefficients uk. In section 6, we shall give formulas for the 
coefficientsA k. 

3. Orthogonal Polynomials Connected with the Gaussian Integration Formulas 

From the theory of Gaussian quadrature formulae (Davis and Rabinowitz [10]), it is well 
known that the existence of a polynomial PN,=(P-1) in the variable p-1, of degree N, with the 
property 

2rcj ePp-=PN,=(p-l)p-rdp = 0 (6) 

for r=0 ,  1, 2 . . . .  , N--1,  where L is an arbitrary vertical line in the positive half plane of the 
complex plane, is necessary and sufficient for the existence of an N-point integration formula 
with degree of precision 2 N -  1. Condition (6) means that PN,~(P- 1) is a polynomial of degree N, 
which is orthogonal to all polynomials of degree < N, with respect to the weight function 
eP p -s. 

If we set 

cbr (t) = 5 ~ -1 {p-(s + ~)Pu,~ (P- ') } (7) 

where S - ,  denotes the inverse Laplace transform, the condition (6) is equivalent to 

�9 ~(i) = 0 

for r=0 ,  1, 2 . . . . .  N - 1 .  
Using the convolution property of the Laplace transform, we obtain 

f 1 1 ~(1-u)du r CN + U~+r-~qN_ , = 0 ,  = 0 , 1  . . . . .  N--1 (8) 
0 

where cN and qN-1,s(t) are defined by the relations 

PN,s(p -1) = A[CN q- p -  I QN_ I,s(p- a)] (9) 
and 

qN_ l,s(t ) = 5O-1 {p-1QN_ I,~(p-1) } 
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with QN- 1,~ a polynomial in p-  1 of degree N -  1 and A a normalization coefficient which will be 
determined later. 

Relation (8) implies 

f l  u s+r_ t ( l_u)qn_ l , s ( l_u)  d u = O ,  r = 0 ,  . . . . .  1 N - 2 .  
o 

Thus, qN-1,~( 1 - u )  is orthogonal on [0, 1] to all polynomials of degree < N - 1 ,  with respect 
to the weight function w(u)=u~-l(1- u). 

Hence, we have 

qN- 1,s(t) = p~s? 1)(1 __ 2t) (10) 

where P~"P)(x) denotes a Jacobi polynomial of degree N (see [11], section 10.8). 
Consequently, we have 

qN-l,~(t) = 2 F I ( - N +  1, N+s; 2; t) 

and 

f 
l 

cN: -- us-12FI(-N+l , N+s; 2; 1-u)du 
JO 

o r  

2 s + l  ' N(N+s-1 )  
Substituting (10) and (11) in (9), we have 

A A [ - N + I ,  N+s, 1 ~1 
PN's(P-I)-- N(N+s--1) + --p 3F1 2 ; . (12) 

If we choose the standardization factor as 

A=(-1)N+I N(N+s-1)  

we obtain finally 

PN,s(p- 1) = (--1)N 2Fo ( - N ,  N + s - 1 ;  - ; p - l ) .  (13) 

Formula (13) is valid for all real s >0. 
For s > 1 however, the derivation can be simplified and it is easy to demonstrate that 

PN,~(p-1)=p~{p~O'~-2)(1--2t)} (S>I ) .  (14) 

Another interesting form of PN,s (P- 1) is the confluent hypergeometric function 

PN,s(P-1) = p-N(U+s_ 1)N lVl( -U;  2 - 2 U - s ;  - p )  (15) 

where 

F(q + N) (Pochhammer's symbol) (q)N=-  r(q) " 

4. Properties of the Orthogonal Polynomials 

4.1. Differential Equation. 

It is well known [11] that the generalized hypergeometric function 

U : pFq [Ct l '  0(2, 0(3, " ' "  G(p 1 
[ f l l ,  f12, f13, . . - ,  fl~ ; x 

satisfies the differential equation 

(16) 
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R. Piessens 

(17) 

where 
d 

( ~ X - - .  
dx 

Thus, u = PN,s(X) is a solution of 

xZu"+(sx - 1)u' = U ( U + s -  1)u. (18) 

The differential equation (18) is a special case of 

xeu" +(ax +b)u'= U(N  + a -  1)u (19) 

which is studied by Krall and Frink [12]. Solutions of (19) are the generalized Bessel poly- 
nomials YN(X, a, b). Thus, the polynomials PN,~ (x) are special cases of the generalized Bessel 
polynomials 

PN,~(x) = (-- 1) N YN(x, s, -- 1). (20) 

The properties 4.2, 4.3 and 4.4 are easily derived from the corresponding properties of the 
generalized Bessel polynomials. Properties 4.3 and 4.4 can also be obtained from known 
properties of confluent hypergeometric functions. 

4.2. Rodrigues' Formula 
d N 

PN,~(P- 1) = (__ 1)Ne-ppN+s-1 dP N (ePp-N-s+ 1) (21) 

4.3. Recurrence Relation 

The most important recurrence relation for the polynomials PN,~(x) is 

PN,~ (x) = (aN,~ x + b N,~) PN- 1,s (X) + CN,s PN- 2,~ (x) for N > 2 (22) 

where 

(2N + s -  3)(2N + s - 2) (2N + s - 3)(2 - s) (2N + s - 2)(N - 1) 
U + s -  2 bN,~ = (U + s -  2)(2N + s--4) CU,s = (N + s-- Z)(ZN + s--4) 

eo,  (x) = 1 ,  el, (x) = s x -  1 .  

4.4. Expression for the Derivative 

dp -- NP-  + 
N 

2 N + s - 2  
1, (p ). (23) PN -1 

N) 
2 N + s - 2  PN's(P-1) 

4.5. lnverse Laplace TransJorm 

Using (13), we obtain 
t a -  1 

5f-1 {p-apN,s(p-1)} _- ( _  1)N F ~  2F1 ( - N ,  N + s -  1; a; t) 

where a is an arbitrary real positive number. 

4.6. Moments 

We define the r-th moment as 

(24) 
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MN,r= 2rcj Leep-~PN,s(p-1)p-~dP. 

It is obvious that 

MN,,.=O for r = 0 , 1 , 2  . . . . .  N - 1 .  

Further, we have 

(-- 1)U(N+k)! 
MN'N+k = F(2N+k+s)k! for 

To demonstrate (26), we remark that 

MN, r = ~,(1) 

where ~r(t)is defined as in (7). 
Setting t = 1 in (24), we obtain 

k=O,  1,2 . . . .  

MNr--  (--1)N 2FI(-N,N-- s-1 �9 r-}-s; 1) 
r (r + s) 

o r  

( - 1 )  N r ( r + s ) r ( r + l )  

M,,,, - r (r + s) r (~ + s + N) r (r + l - N ) "  
Thus, formula (25) is proved. 

(25) 

(26) 

Corrollary 
The coefficient of x u in PN,s(x) is 

r (ZN+s-1)  
F ( N + s - 1 )  

Using (26) with k = 0, and (27), we obtain the important  expression 

1 F ( - 1 )  NN! 
hu's= 2~j JL e"P-s[P~v's(P- 1)]2dp = (2N+s-1)F(N+s-1)" 

(27) 

(28) 

5. Abscissas of the Gaussian Integration Formulas 

The abscissas of the Gaussian integration formula of order N are the zeros of PN,s(P-1). 
Grosswals [-13] has studied certain properties concerning the zeros of the simple Bessel 
polynomials. Some of these properties are also valid for the generalized Bessel polynomials, 
[-14]. The quadrature formulas of even order have no real abscissas, those of odd order have 
exactly one real abscissa. All the abscissas have positive real parts and occur in complex 
conjugated pairs. 

The zeros of PN(u-1) must be found by a numerical process of solving a polynomial for its 
roots, for instance Newton-Raphson's  iteration process. Finding an approximate zero as 
starting value for the iteration process is facilitated by a certain regularity in the distribution of 
the zeros. For  fixed N and s, the zeros lie very nearly on a circle with center on the negative real 
axis. The radius of this circle is approximately an increasing linear function of N and s. See 
fig. 1 and fig. 2. For fixed N and s, the angular distance between two consecutive abscissas is 
nearly constant (see [15]). 

6. Weights of the Gaussian Integration Formulas 

We shall give two formulas for the weights. These formulas can be proved in the same way as 
for the classical Gaussian integration formulas. 
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Figure 1. Distribution of the Gaussian abscissas in the first quadrant  of the complex plane for s = 1 and various values 
of N. 
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Figure 2. Distribution of the Gaussian abscissas in the first quadrant  of the complex plane for N = 5 and N = 12 and 
various values ofs .  

(i) First formula Jot the k-th weight A k 

A k = [PM,s (u~- t)] (29) 

where hM, S is given by (28) and where uk is the k-th abscissa. 

(ii) Second formula for the k-th weight 
Using the relations (23) and (26) and the Christoffel-Darboux formula 

N pM,.~(p-1)pM,s(y-1) pN+l,~(p-1)pN,s(y-1)_pN+l,s(y-1)pN,s(p-1) 
M~=o hM,s au + l,~hu,s(p- t-- y - ~) 

where hu,s is given by (28) and as + 1,~ is the coefficient which arises in the recurrence relation 
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(22), formula (29) can be transformed in 

( N - I )  ! 2fe~ + s _  2 ]2 
ak = (-- 1)u-1 F(N + s -1 )Nu~  - -uC  i " 1,s( k )J 

(30) 

7. Some Practical Remarks 

1. No convenient rule exists for determining at the outset the order N so that the desired 
accuracy is obtained. The practical procedure is the use of a series of formulas (2) with increasing 
order. If, for the given value of t, agreement occurs of two successive approximations to within 
the desired accuracy, the last computed value is retained as definitive result. This procedure 
has the disadvantage of using different values of the arguments of the Laplace transform for 
different values of the order of formula (2). Increase in the order of the formula makes no use of 
previous evaluations of the Laplace transform F(p). This disadvantage can be avoided if, in 
combination with the Gaussian rules, new quadrature formulas are used, given by Piessens [ 16]. 
2. When the order N of the formula (2) is large, the moduli of the coefficients A k are also 
large. This may lead, from the numerical point of view, to large losses of significance by can- 
cellation. 
3. Several authors have calculated tables of the coefficients Ak and Uk. We give here a survey 
of these tables. Krylov and Skoblya give in [8] the coefficients Ak and Uk to 5 to 7 significant 
figures for N = 1 (1)9 and for values of s which are integer multiples of �88 and �89 between the limits 
�88 and 3. In [19], they give for s = 1(1)5 and N = 1(1)15 the Ak'S and Uk'S to 20 significant figures 
and for s=0.01(0.01)3.00 and N =  1(1)10 to 7 to 8 significant figures. 

Skoblya [9] gives the Uk'S to 8 significant figures and the Ak'S to 7 significant figures for 
N =  1(1)10 and s=0.1(0.1)3.0. 

Salzer [6] gives the coefficients Uk, their inverses, and the products Uk Ak to between 4 and 8 
significant figures for N =  1(1)8 and s=  1. 

In another paper, Salzer [7] gives the same quantities to between 12 and 15 significant 
figures for N =  1(1)16 and s=  1. 
Stroud and Secrest [17] give the abscissas Uk and the weights Ak to 30 significant figures for 
N=2(1)24 and s=  1. 

Piessens [-18] gives the Uk'S and the Ak'S to 16 significant figures for N=6(1)12 and s=0.1 
10 (0.1)3.0, 3.5, 4.0, ~, ~, 4, ~, 7, ~, 7,�88 3, ~, -], 9, ~, 1, ~, 9~. 

8. A Numerical Example 

The first step in using formula (2) is the determination of the value of s. In most cases, there is 
no difficulty. However, for some Laplace transforms, there exists no convenient value of s. 
Sometimes, F(p) can then be written as a sum of two or more Laplace transforms that can be 
inverted separately, each with a different value of s. 

For instance 

F(p)= p O.Sexp(_p-O.5) 

can be written as 

F (p) = p-O.S cosh (p-O.5)_p-O.5 sinh(p-O.5). 

(31) 

(32) 

Here, the first term of the second member can be inverted with s = 0.5 and the second term with 
s=l .0 .  

The exact original function is 

1 f u exp ( -  u2/4t) Jo (2x/u) du. f ( O -  o 

Using the approximate solution 
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6 6 
f(t) =t -~  Z A?'5)GI(u? "5)) - • A(ka'~176 (33) 

k=l  k=l  
where 

G i (x) = cosh [4(t/x)] 
and 

G 2 (x) = x/(x/t) sinh [4(t/x)] 
and where A(k ~) and U(k ~) are the weights and abscissas for s = a and N = 6, given in [18], we obtain 
the following errors (by error we mean J true v a l u e - a p p r o x i m a t e  value I) 

t exact original function error 

1.0 -0.01072342858155 < 1.10 -14 
10.0 -0.02478598394520 1.10 i4 
20.0 -0.00308187970796 5.10 -14 
50.0 0.00271995009362 7.10 -14 

100.0 0.00021092905918 4.10 -12 
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